

code, data

Motivation

Why: Relax the assumptions of unseen-object 6D pose estimation methods, by removing the need for 3D models or video sequences showing the unseen object

How: Leverage on pretrained Vision-Language Models

2. He, Xingyi, et al. "Onepose++: Keypoint-free one-shot object pose estimation without CAD models." NeurIPS 2022. 3. Bai, Xuyang, et al. "Pointdsc: Robust point cloud registration using deep spatial consistency." CVPR 2021

4. Wang, He, et al. "Normalized object coordinate space for category-level 6d object pose and size estimation." CVPR 2019.

Jaime Corsetti^{1,2} ¹Fondazione Bruno Kessler

Reference (anchor)

A brown open

laptop

"A green

tall can"

"A white and

blue remote"

Open-vocabulary object 6D pose estimation Davide Boscaini¹ Changjae Oh³ Andrea Cavallaro^{4,5} Fabio Poiesi¹ ³Queen Mary University of London ⁴IDIAP Research Institute ²University of Trento jcorsetti@fbk.eu

Our method: Oryon

Formulation

- Given an object O present in A and Q, Oryon estimates $T_{A \to Q}$: the 6D pose of O in Q with respect to A
- O is described by a textual prompt T given by the user
- At train time $O \in O_{train}$, at test time $O \in O_{test}$, with $O_{train} \cap O_{test} = arnothing$
- A and Q show different scenes, and are represented as RGBD images

5. Hodan, Tomas, et al. "Bop: Benchmark for 6d object pose estimation." ECCV 2018. 6. Liang, Feng, et al. "Open-vocabulary semantic segmentation with mask-adapted clip." CVPR 2023. 7. Lowe, David G. "Object recognition from local scale-invariant features." ICCV 1999. 8. Gümeli, Can, et al. "ObjectMatch: Robust Registration using Canonical Object Correspondences." CVPR 2023.

⁵EPFL github.com/jcorsetti/oryon

Results

Method	Mask	REAL275 ⁴					Toyota-Light ⁵						
		AR	VSD	MSSD	MSPD	ADD	mloU	AR	VSD	MSSD	MSPD	ADD	mloU
SIFT ⁷	Oracle	34.1	16.5	37.9	48.0	16.4	100.0	30.3	7.3	39.6	44.1	14.1	100.0
	OVSeg ⁶	18.3	8.6	19.9	26.5	7.4	56.4	25.8	6.4	34.2	36.9	11.8	75.5
	Ours	<u>24.4</u>	12.2	27.3	<u>33.8</u>	12.8	66.5	<u>27.2</u>	<u>5.7</u>	<u>35.4</u>	<u>40.6</u>	<u>9.9</u>	68.1
ObjectMatch ⁸	Oracle	26.0	15.5	31.7	30.8	13.4	100.0	9.8	2.4	13.0	14.0	5.4	100.0
	OVSeg ⁶	14.9	9.1	18.8	16.8	7.8	56.4	9.2	2.6	12.1	13.0	5.3	75.5
	Ours	22.4	<u>14.1</u>	<u>27.9</u>	25.2	<u>13.2</u>	66.5	8.3	2.2	10.5	12.1	3.8	68.1
Oryon	Oracle	46.5	32.1	50.9	56.7	34.9	100.0	34.1	13.9	42.9	45.5	22.9	100.0
	OVSeg ⁶	26.4	18.3	29.4	31.5	17.2	<u>56.4</u>	29.2	11.9	36.8	38.9	18.9	75.5
	Ours	32.2	23.6	36.6	36.4	24.3	66.5	30.3	12.1	37.5	41.4	20.9	<u>68.1</u>
∆ score		+7.8	+9.5	+8.7	+2.6	+11.1	+10.1	+3.1	+6.4	+2.1	+0.8	+11.0	-7.4

Prompt influence on REAL275

	_				
Prompt	Mask	AR	ADD	mloU	
Nonomo	Oracle	38.6	21.5	100.0	
NO name	Ours	3.0	0.4	3.0	
Mieleeding	Oracle	39.4	24.9	100.0	
Misleading	Ours	25.4	14.5	56.4	
Conorio	Oracle	39.0	26.1	100.0	
Generic	Ours	30.0	19.0	63.0	
Standard	Oracle	46.5	34.9	100.0	
Stalluaru	Ours	32.2	24.3	66.5	

Example prompts

- Standard:
- No name: A brown open object
- Misleading: A white closed laptop
 - A laptop
 - A brown open laptop

Limitations and future works

and it made use of time on the Tier 2 HPC facility JADE2, funded by EPSRC (EP/T022205/1).

Quantitative results

• Oryon requires camera intrinsics and depth information: a depth estimator could be used instead

• Object textual description could be difficult to provide for some objects (e.g., industrial components)

• Prompt detail is limited by training data: an ad-hoc dataset could be generated by using LLMs